Performance Analysis of Clustering Techniques to Normal and Uniform Distribution of Data Points

نویسنده

  • D. Prabhu
چکیده

Clustering technique is one of the most important research areas in the field of data mining. This paper proposes an improved K-Means clustering algorithm form partition based clustering algorithms. It determines the initial centroid of the cluster and gives more efficient performance and reduces the time complexity of the large data sets. The data set used here is banking data. Fuzzy C-Means clustering algorithm also implemented since it produces the soft clusters. Finally the proposed algorithm is compared and analyzed for the Normal and Uniform distribution of data point with KMeans, Fuzzy C-Means and K-Medoids. The computational complexity and performance is showed much better with improved K-Means algorithm. Keywords— Clustering, K-Means, Fuzzy C-Means, KMediods, Normal and Uniform distribution

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Choosing the Best Hierarchical Clustering Technique Based on Principal Components Analysis for Suspended Sediment Load Estimation

1- INTRODUCTION The assessment of watershed sediment load is necessary for controling soil erosion and reducing the potential of sediment production. Different estimates of sediment amounts along with the lack of long-term measurements limits the accessibility to reliable data series of erosion rate and sediment yield. Therefore, the observed data of suspended sediment load could be used to ...

متن کامل

Computational Complexity between K-Means and K-Medoids Clustering Algorithms for Normal and Uniform Distributions of Data Points

Problem statement: Clustering is one of the most important research areas in the field of data mining. Clustering means creating groups of objects based on their features in such a way that the objects belonging to the same groups are similar and those belonging to different groups are dissimilar. Clustering is an unsupervised learning technique. The main advantage of clustering is that interes...

متن کامل

An Enhanced k-means algorithm to improve the Efficiency Using Normal Distribution Data Points

Clustering is one of the unsupervised learning method in which a set of essentials is separated into uniform groups. The k-means method is one of the most widely used clustering techniques for various applications. This paper proposes a method for making the K-means algorithm more effective and efficient; so as to get better clustering with reduced complexity. In this research, the most represe...

متن کامل

Asymmetric Uniform-Laplace Distribution‎: ‎Properties and Applications

‎The goal of this study is to introduce an Asymmetric Uniform-Laplace (AUL) distribution‎. ‎We present a detailed theoretical description of this distribution‎. ‎We try to estimate the parameters of AUL distribution using the maximum likelihood method‎. ‎Since the likelihood approach results in complicated forms‎, ‎we suggest a bootstrap-based approach for es...

متن کامل

خوشه‌بندی داده‌ها بر پایه شناسایی کلید

Clustering has been one of the main building blocks in the fields of machine learning and computer vision. Given a pair-wise distance measure, it is challenging to find a proper way to identify a subset of representative exemplars and its associated cluster structures. Recent trend on big data analysis poses a more demanding requirement on new clustering algorithm to be both scalable and accura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012